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SUMMARY

A comparison is made between the Arnoldi reduction method and the Crank–Nicolson method for the
integration in time of the advection–diffusion equation. This equation is first discretized in space by the
classic finite element (FE) approach, leading to an unsymmetric first-order differential system, which is
then solved by the aforementioned methods. Arnoldi reduces the native FE equations to a much smaller
set to be efficiently integrated in the Arnoldi vector space by the Crank–Nicolson scheme, with the
solution recovered back by a standard Rayleigh–Ritz procedure. Crank–Nicolson implements a time
marching scheme directly on the original first-order differential system. The computational performance
of both methods is investigated in two- and three-dimensional sample problems with a size up 30000. The
results show that in advection-dominated problems less then 100 Arnoldi vectors generally suffice to give
results with a 10−3–10−4 difference relative to the direct Crank–Nicolson solution. However, while the
CPU time with the Crank–Nicolson starts from zero and increases linearly with the number of time steps
used in the simulation, the Arnoldi requires a large initial cost to generate the Arnoldi vectors with
subsequently much less expensive dynamics for the time integration. The break-even point is problem-
dependent at a number of time steps which may be for some problems up to one order of magnitude
larger than the number of Arnoldi vectors. A serious limitation of Arnoldi is the requirement of linearity
and time independence of the flow field. It is concluded that Arnoldi can be cheaper than Crank–Nicol-
son in very few instances, i.e. when the solution is needed for a large number of time values, say several
hundreds or even 1000, depending on the problem. Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Recently, reduction or spectral methods have received some attention for the solution of
ordinary first-order differential equations of the form
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Hc+P
dc
dt

+ f=0 (1)

arising from the finite element integration in space of the diffusion [1–4] or the advection–
diffusion [5,6] equations. The basic idea underlying the reduction approach is to generate a
basis of orthogonal vectors, called Lanczos [7] and Arnoldi [8] vectors, in a Krylov sub-space
Kr to address diffusive and advective–diffusive type problems, respectively. Then the matrix
H−1P is projected onto Kr by the Lanczos/Arnoldi vectors and the solution to Equation (1) is
recovered following the standard Rayleigh–Ritz reduction procedure. A fundamental require-
ment for the Lanczos/Arnoldi method to be economically competitive with a more traditional
time marching scheme for the integration of Equation (1) is that the size of the Lanczos/
Arnoldi space be much smaller than the size n of Equation (1) and a cost-effective procedure
be found to implement the Lanczos/Arnoldi recursive relationship, which involves the execu-
tion of the expensive product between H−1 and a vector. If the above conditions are satisfied,
the time solution of the reduced system, e.g. by the use of the Crank–Nicolson scheme [9], is
much less expensive than the solution of the original equations by the same method. However,
a reduction method requires the initial cost to generate the Lanczos/Arnoldi vector space, with
a size m, determined by the number of vectors needed to provide the solution to Equation (1)
with the same accuracy as a direct time marching scheme, e.g. the second-order accurate
Crank–Nicolson scheme. An important point to consider is the number of time values at
which the solution to Equation (1) is sought. Since the Crank–Nicolson method does not
require an initial cost, it goes without saying that a Lanczos/Arnoldi method can be superior
to a Crank–Nicolson only after a sufficiently large number of time steps. To investigate the
break-even point in advective–diffusive problems is one of the issues of the present paper.
Another issue is finding out how many Arnoldi vectors prove necessary to ensure a solution
with an accuracy comparable with the direct Crank–Nicolson solution, say 10−3–10−4 in
relative difference. One major observation to make is that a reduction method is less general
and more difficult to implement on a computer than a standard time marching scheme and can
offer a potentially worthwhile alternative only as long as Equation (1) is linear and H and P
are time independent. This implies, for instance, that time-dependent velocity fields may
seriously hamper the use of Arnoldi as they would reflect on a time dependent matrix H.
Therefore, the comparison makes special sense and is carried out under the above mentioned
restrictive assumptions. Actually, some authors (e.g. Reference [10]) have integrated Equation
(1) by a Krylov approximation method with a forcing vector f, which is time-dependent.
Others (e.g. Reference [11]) have extended the approach to systems of non-linear differential
equations using Krylov sub-space approximations to the exponential of the Jacobian. It must
be observed, however, that these extensions require mathematically complex and computation-
ally heavy algorithms, involving the product of a matrix exponential with a vector (based on
some rational or polynomial approximation), which are far more difficult than the direct
Crank–Nicolson solution in the reduced Krylov sub-space. Furthermore, to our knowledge,
no techniques has been developed to address the problem, which may occur frequently in the
applications, where either H or P or both are time-dependent (e.g. non-stationary flow field in
compressible porous media).

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 25–38
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This paper is organized as follows. First, the generation of the Arnoldi vectors and the
Arnoldi reduction method are briefly reviewed. Then, four problems of increasing size
(n=274, 3321, 13041 and 29889) in two- and three-dimensional settings are solved using the
Arnoldi method and the Crank–Nicolson scheme. The results are compared with an estimate
of the proper size m of the Arnoldi space and the determination of the break-even point for
each example. Diffusion- and convection-dominated problems with Peclet numbers of 1, 5 and
10 are considered. Finally, a set of conclusive remarks on the relative performance of the two
time integration approaches and some recommendations on their use are issued.

2. CRANK–NICOLSON AND ARNOLDI REDUCTION METHODS

2.1. Crank–Nicolson method

If H and P are both time -independent matrices, the integration in time of Equation (1) by the
second-order accurate Crank–Nicolson scheme [9] yields the following algebraic system to be
solved repeatedly in time:

�
H+

2P
Dt

�
ct+Dt=

�2P
Dt

−H
�

ct− ft− ft+Dt (2)

The solution to Equation (2) can be addressed by a direct elimination method [12] after an
optimal preliminary reordering or, more conveniently, if the size of Equation (2) is large, by
an iterative method. For instance, a projection method based on the unsymmetric conjugate
gradients [13].

2.2. Arnoldi method

Given the Krylov space Kr=span{v1, Av1, . . . , Am−1v1}, with A an unsymmetric n×n matrix
and v1 an arbitrary unit vector, the Arnoldi recursive procedure generates an orthogonal vector
basis in Kr. At each step the algorithm [8] requires the product between the Arnoldi vector vj

and A to get wj, which is orthogonalized against all the previous vi by a standard Gram–
Schmidt procedure. Hence

wj=hj+1, jvj+1=Avj− %
j

i=1

hijvi (3)

where hij=vi
TAvj and hj+1, j= ��wj ��. If Vm= [v1, v2, . . . , vm ] is an n×m matrix, with its

columns as the first m Arnoldi vectors, Km is an m×m Hessemberg matrix, with the non-zero
elements equal to hij and Im= [e1, e2, . . . , em ] is the identity matrix, we have [14]

AVm=VmKm+wmem
T (4)

Vm
TVm=Im, Vm

Twm=0 (5)
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Vm
TAVm=Km (6)

Setting A=H−1P, Equation (6) takes on the form

Vm
TH−1PVm=Km (7)

Applying the Ritz–Rayleigh reduction process to Equation (1), which is left-multiplied by
Vm

TH−1, yields

Vm
Tc+Vm

TH−1P
dc
dt

+Vm
TH−1f=0 (8)

Solution c is now expressed in the Arnoldi vector space

c=Vmu (9)

Equation (8) turns into

Vm
TVmu+Vm

TH−1PVm

du
dt

+Vm
TH−1f=0 (10)

By the use of Equations (5) and (7), with g=Vm
TH−1f, we arrive at a reduced system of size

m

u+Km

du
dt

+g=0 (11)

which may be integrated in time by the Crank–Nicolson scheme (2). The solution is then
back-recovered by Equation (9).

The Arnoldi algorithm (3) applied to the matrix A=H−1P for j=1, 2, . . . , m takes on the
following expression:

wj=hj+1, jvj+1=H−1Pvj− %
j

i=1

hijvi (12)

where hij=vi
TH−1Pvj and hj+1, j= ��wj ��.

A lot of research has been done to address the solution to Equation (1) with P=I using the
exponential of the matrix H projected onto the Krylov sub-space Kr with respect to the
Arnoldi basis Vm ; see, for example, References [10,15]. With this approach, the product
between exp(− tH) and a vector v, which is theoretically required in the formally exact
integration of Equation (1), is approximated as

exp(− tH)v#bVm exp(− tKm)e1 (13)
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where e1 is the unit vector of size m with its first component equal to one, b is the Euclidean
norm of v and Km is the Hessemberg matrix obtained from the above Arnoldi process, with
A=H (and P=I). Most of the improvements in the matrix exponential approach (see
Reference [16] for a review) concern the efficient calculation of Equation (13), for instance,
using suitable approximate expressions for the exponential (e.g. References [17,18]). We
observe that the efficient computation of Equation (13) is not an issue of the present study. In
fact, as will be demonstrated later, the major burden in the Arnoldi reduction method is not
the efficient correct calculation of Equation (13) or the accurate solution to the equivalent
system (11), but the generation of the Arnoldi vector space, which requires a computational
cost much larger than the cost of solving the reduced problem in the Krylov sub-space.
Therefore, we have elected to solve Equation (11) by a traditional Crank–Nicolson scheme
with an appropriate time step Dt, even though we are aware that using the matrix exponential
approach a larger, or much larger, Dt can be used provided that Vm is sufficiently large (see,
for instance, Reference [10], p. 1254). Saving time in the solution of Equation (11) will not help
to substantially abate the cost of the Arnoldi method.

Another issue to point out is that the above Arnoldi algorithm uses H−1 instead of H, as
is done in the papers mentioned previously. Using H or H−1 produces different Arnoldi
vectors and hence a different approximate solution in the respective space. In other words,
convergence to the correct solution may depend on whether H or H−1 is implemented into the
Arnoldi recursive equations. We do not use H, as a much larger Arnoldi space is needed to
converge at intermediate/large time values, as will be shown later. Using H−1 requires a higher
computational cost to perform the product H−1Pqj in Equation (12). However, this larger cost
is fully counterbalanced by the faster convergence in the corresponding Krylov space (see
Section 6).

3. DESCRIPTION OF THE SAMPLE PROBLEMS

3.1. Regular two-dimensional grid

Consider a rectangular domain 1×0.5 m with Dirichlet conditions prescribed along x=0,
namely c(0, t)=1 for 0.25y50.3 and c(0, t)=0 elsewhere. The Neumann condition (c/(n=
0 is prescribed on the remaining sides. For the Darcy velocity, we assume 6x=1 m s−1, 6y=0
m s−1 and the time integration step Dt=0.02 s. We will explore five sample problems in
relation to five different uniform triangular discretizations of the domain and Peclet numbers
Pe=Dx/aL, with aL as the longitudinal (along x) dispersivity and the transverse dispersivity
aT=aL. Table I shows the spacings Dx=Dy, the size N of the grids, the total number of
triangular elements, NE, aL and Pe for the various cases (1a–2b).

3.2. Regular three-dimensional grid

The domain is a box 1×0.5×1 m; 6x=1 m s−1; 6y=6z=0 m s−1, Dt=0.02 s. The boundary
conditions are obtained by extending those of the previous example along the z-direction. The
vertical side is discretized using a uniform spacing Dz=0.125 m, with tetrahedral elements
generated as is described in Reference [19], starting from the two-dimensional mesh of the
previous problem. The data of Table I are used for this problem as well (cases 3a and 3b).

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 25–38
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Table I. Nodal spacing Dx=Dy, number of nodes n, number of finite elements
(triangles in the two-dimensional (2D) problem, tetrahedrons in the three-
dimensional (3D) problem) NE, dispersivity aL and aT, and the maximum

Peclet number (Pe) for the various test cases.

Dx=Dy (m) n NE aL=aT (m)Problem Pe

0.0125 3321 6400 0.01251a (2D) 1
0.0125 3321 64001b (2D) 0.0025 5
0.0125 3321 6400 0.0001251c (2D) 10
0.00625 13 041 25 6002a (2D) 0.00625 1

2b (2D) 0.00625 13 041 25 600 0.00125 5
0.0125 29 889 153 6003a (3D) 0.0125 1
0.0125 29 889 153 600 0.00253b (3D) 5

274 5334a (2D) 6000 1
4b (2D) 274 533 1200 5

3.3. Irregular two-dimensional grid

The domain here is a circle with the centre at the origin and radius r=R=10000 m (Figure
1). We assume c=1 at r=0 and a radial velocity over a triangle equal to

6r=
Q

2pr
[6x=

QxG

2pr2 , 6y=
QyG

2pr2, Q=1

with (xG, yG) co-ordinates of the centre of gravity of each triangle. The triangular mesh of
Figure 1 has been generated using the algorithm given in Reference [20]. Table I summarizes

Figure 1. Irregular two-dimensional grid, n=274, NE=533.
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the characteristic information for the cases 4a and 4b in this example, where Dt=84600 s is
assumed.

4. SOLUTION OF LINEAR SYSTEMS

The algebraic linear systems arising from the Crank–Nicolson integration of both Equations
(1) and (2) are solved by the use of either the iterative projection method, bi-conjugate gradient
stabilized (Bi-CGSTAB) method [13] or a direct elimination scheme [12]. More precisely,
system (2), whose coefficient matrix is H+2P/Dt, is usually solved by Bi-CGSTAB precondi-
tioned with the incomplete triangular factor and no fill-in (ILU) [21–23]. Bi-CGSTAB requires
on the average ten iterations per time step. The only exception is problem 2b, for which
Bi-CGSTAB preconditioned with ILU does not converge. In this case, a direct method is used
instead. With reference to the computation of the m Arnoldi vectors, Equation (12), setting
q̄j=Pqj, the products H−1q̄j=zj are performed implicitly by solving the linear system

Hzj= q̄j (14)

usually by a direct approach. The only exception is problem 3b, for which the direct approach
turned out to be unfeasible. This is so because the memory requirement of the direct solver for
problem 3b exceeded the memory capacity of our workstation (256 Mbytes), despite the use of
an optimal reordering algorithm with a substantial reduction of the fill-in in the triangular
factors. It is to be noted, however, that Equation (14) for problem 3b could not be solved
successfully by Bi-CGSTAB either, as it also failed to converge. This example shows that in
three-dimensional particularly difficult problems (e.g. large Peclet number), the Arnoldi
solution strategy can hardly be applied.

It is worth noting that the Arnoldi method requires the solution of m linear systems of the
type (14), where the coefficient matrix H is the stiffness–advection matrix arising from the FE
discretization of the transport equation. Compared with the corresponding system (2), Equa-
tion (14) is more difficult to solve since H has a conditioning that is surely worse than that of
H+2P/Dt. This is due to the fact that the capacity matrix P is symmetric positive definite and
hence enhances the conditioning of H.

5. COMPARISON OF ARNOLDI AND CRANK–NICOLSON METHODS

Figure 2 shows the behaviour of the maximum difference errmax between the solutions to
Equation (1), obtained with the direct integration by the Crank–Nicolson method, and the use
of the Arnoldi approach versus the number, m, of Arnoldi vectors. If c i

(C)and c i
(A) denote the

Crank–Nicolson and Arnoldi solutions respectively, we define

el=max{�c i
(C)−c i

(A)�: i=1, . . . , n}

errmax=max{el : l=1, . . . , 50}

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 25–38
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Figure 2. Behaviour of errmax versus the number m of Arnoldi vectors.

where 50 is the number of time steps used in the integration of Equation (1). All the problems
reported in Table I are represented in Figure 2, except for test case 3b, for which neither the
direct nor the iterative approaches are successful in the solution of system (14). Inspection of
this figure indicates that a number of Arnoldi vectors m smaller than 100 suffices to provide
errmax between 10−3 and 10−4, i.e. small enough for c i

(A) to be considered a good approxima-
tion of c i

(C), irrespective of the problem size n. Note that m tends to increase for increasing Pe.
This would suggest that for large Peclet numbers, i.e. in highly convection-dominated

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 25–38
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problems, the number of Arnoldi vectors needed to obtain an accurate solution (or at least
results close to the Crank–Nicolson ones) may exceed 100.

We now try to compare the CPU times required by both approaches and find out the
break-even point where they are equally expensive. This point is given by the number of
time steps used in the simulation beyond which the Arnoldi method is economically more
convenient than Crank–Nicolson. To perform a meaningful analysis that proves to be
general as much as possible, we show the results for m=30, 40, 50 and 100, and use the
most robust solver for either approach, i.e. usually the Bi-CGSTAB solver for direct
Crank–Nicolson and the Gauss elimination solver for Arnoldi (remember that Bi-CGSTAB
may not converge when solving (14)). Figure 3 shows the results for problems 1a, 1b and
1c. Note that for any given m Arnoldi times are almost insensitive to Pe and to the
number M of times steps with most of the cost spent to produce the Arnoldi vectors. By
contrast, as expected, Crank–Nicolson cost increases linearly with M and the straightline
slope also increases with Pe since a larger Pe can make Bi-CGSTAB more slowly conver-
gent. The representative break-even point for m=100 in these three figures is around
M=300. In Figure 4 (problem 2a) the break-even point is beyond M=1500. A somewhat
anomalous result is that of Figure 4 (problem 2b). Here it proved necessary to solve (2) by
a direct solver since Bi-CGSTAB does not converge. Of course, the break-even point here is
much smaller, of the order of 100, as Crank–Nicolson is particularly expensive in this case.
Figure 3 (problem 3a) points out again an M of the order of 1000 or more, although in
Arnoldi as well we elected to use Bi-CGCTAB as it proves more efficient than the direct
solver. The results for problem 3b are not given since for this case Arnoldi could not be
addressed on our workstation, as was mentioned before. For small problems 4a and 4b, M
is also small, of the order of 100 or smaller, as fewer Arnoldi vectors are required to
capture the solution (Figure 4).

6. USING P−1H TO BUILD THE KRYLOV SUB-SPACE

Some people might think of solving system (1) in the form

P−1Hc+
dc
dt

+P−1f=0 (15)

and generating the Arnoldi vector sequence by the use of matrix P−1H [10]. In such a way
the Arnoldi recursive scheme would become cheaper since it would require the solution of
linear systems with matrix P, which is symmetric positive definite, in place of matrix H,
which is unsymmetric indefinite. We will call this procedure Arnoldi 2 as opposed to the
Arnoldi 1 procedure described in Section 2.2. At a first glance, Arnoldi 2 appears to be the
classical Colombo’s egg. Unfortunately, it does not work as is demonstrated in Table II,
showing errmax versus the Arnoldi 2 space size m over 50 time steps for the problems
discussed earlier and comparing the Arnoldi 1 and 2 results. We note from Table II that

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 25–38
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Figure 3. CPU time versus the time steps for problems 1a, 1b, 1c, 3a.

convergence in the Arnoldi 2 space is very slow with a much larger Arnoldi basis needed to
achieve the same accuracy as with the original Arnoldi 1 sequence.

This outcome comes as no surprise, since Arnoldi (as well as Lanczos) converges earlier
to the rightmost eigenpairs of the matrix used to form the Krylov sub-space. The solution
to Equation (1) is essentially controlled by the leftmost eigenvectors of H−1P (for a

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 25–38
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Figure 4. CPU time versus the time steps for problems 2a, 2b, 4a, 4b.

time-independent source vector f as was the case in the examples discussed above), and this
accounts for the faster convergence of the Arnoldi 1 method, especially at intermediate/large
values of time.

Finally, it should be mentioned that not only Arnoldi 2 delays the convergence to the
desired solution but it also requires increasing the core memory to store the larger number of
Arnoldi 2 vectors generated by the procedure. So Arnoldi 2 must be dismissed on the ground
of both computational inefficiency and impracticality of for large size problems.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 25–38
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7. CONCLUSIONS

An analysis has been performed and a comparison has been made between the computational
behaviour and cost of the Crank–Nicolson and Arnoldi methods for the integration in time of
linear differential systems, which arise from the FE solution of the sub-surface transport
equation. The following results are worth summarizing:

1. The Arnoldi method requires the a priori generation of an Arnoldi vector space with a size
m, which has been found to be of the order of 100 also in large advective-dominated
problems with many thousands nodes.

2. The cost of the Arnoldi method is basically determined by the cost for generating the
Arnoldi vector space. Time integration in this space is relatively inexpensive. Therefore, any
effort to improve the integration of the projected equations by the matrix exponential
approach which may allow for a larger, or much larger, time step than the standard
Crank–Nicolson scheme does not help substantially the Arnoldi method. Its basis cost is

Table II. Errmax versus size m of Arnoldi 1 and Arnoldi 2 vector spaces for
the problems discussed earlier (Pe=1).

m n=274 n=3321

Arnoldi 2 Arnoldi 1 Arnoldi 2Arnoldi 1

0.19724E+000.14457E+010.23693E+00 0.10607E+0110
20 0.50140E−01 0.10119E+01 0.53510E−01 0.94917E+00

0.87057E+000.87500E−020.10119E+010.97200E−0230
0.14400E−020.10119E+01 0.79927E+000.16100E−0240

0.10120E+01 0.36000E−03 0.74271E+0050 0.20000E−03
60 0.70000E−040.10000E−03 0.69581E+000.10121E+01

0.10000E−040.10126E+010.10000E−0470 0.65040E+00
0.59361E+000.10000E−0480 0.10000E−03 0.10136E+01

0.10000E−04 0.55925E+0090 0.10000E−03 0.10164E+01
0.10332E+01 0.10000E−04 0.52041E+00100 0.23000E−03
0.80880E+00150 0.31135E+00—

n=13 041 n=29 889

0.30412E+0010 0.11254E+01 0.11381E+010.33118E+00
0.17860E+000.10707E+0020 0.10634E+010.11088E+01
0.71540E−010.10935E+01 0.10103E+010.35290E−0130

0.10533E+01 0.25110E−01 0.96211E+0040 0.93200E−02
0.10308E+0150 0.79700E−02 0.85831E+000.28100E−02
0.10138E+0160 0.22700E−02 0.83236E+000.10200E−02

0.77328E+000.82000E−030.98186E+000.51000E−0370
0.95311E+00 0.34000E−03 0.74761E+0080 0.25000E−03

90 0.10000E−03 0.91499E+00 0.10000E−03 0.69283E+00
0.66289E+000.30000E−040.89872E+000.40000E−04100

150 — 0.47301E+000.78985E+00

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 25–38
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produced by the repeated solution of m linear systems with the stiffness–advection
unsymmetric matrix H, which is generally poorly conditioned and hence not recommended
for the use of iterative solvers.

3. The Crank–Nilcolson method does not have an initial cost and displays a cost dynamics,
which grows linearly with the number M of time steps. Since the Crank–Nicolson matrix
H+2P/Dt is better conditioned than H because of the addition of the symmetric positive
definite matrix 2P/Dt, an efficient conjugate gradient type solver, such as Bi-CGSTAB, can
be generally used. This choice, however, makes the solver performance, i.e. the slope of the
cost straight line versus M, sensitive to some extent to the grid Peclet number, namely the
cost is higher for advection-dominated problems. By distinction, Arnoldi is not sensitive to
the Peclet number, at least up to the Peclet values explored by the present study.

4. The break-even point of the Crank–Nicolson and Arnoldi methods for large problems, i.e.
with a number of nodes one order of magnitude or more larger than size of the Arnoldi
vector space, can be several hundreds up to more than 1000 for the most difficult problems.

5. For very large problems where advection dominates, it may prove necessary to use a direct
solver for Crank–Nicolson as well. In such a case, the performance of Arnoldi relative to
Crank–Nicolson increases significantly and the break-even point can be substantially
lower.

6. In some very large problems dominated by advection a direct solution approach may be
unfeasible for Arnoldi and Bi-CGSTAB may not converge, hence Arnoldi cannot be used.

7. Generation of the Arnoldi vector space by the use of P−1H instead of H−1P would reduce
the cost required by each single Arnoldi vector but would greatly slow down the
convergence to the solution in the Krylov sub-space and create the problem of preserving
in the core memory a large number of vectors. Therefore, it is not a viable alternative to
the Arnoldi procedure described in Section 2.2.

The general conclusive remark from the previous analysis is that the Crank–Nicolson
method is more robust and less expensive than Arnoldi for medium to large size transport
problems. The break-even point occurs after a large number of time steps, typically several
hundreds or even 1000.
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